If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17^2=18^2
We move all terms to the left:
x^2+17^2-(18^2)=0
We add all the numbers together, and all the variables
x^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $
| 54p+13.1=26p+3.5 | | 10x+4=2/3(15x+6) | | n-2=63 | | 20=5y-10 | | x^2+4^2=7^2 | | 1/2=-(1/8)j | | 11k-2k+k-9k=20 | | b-2-16b=-2 | | x-100=40. | | 1/2=-(1/8j) | | 5x=411 | | 3(x+4.2)=36 | | 3x-12+2x+1=180 | | -9=-2a-19 | | -4(b+6)-6(b+5)=(-5b)+4b | | -9=-2a–19 | | 5x-17=x+7, | | 2(3z–2)+8=34 | | 5x+17.32=30.12 | | 3/12=n/6 | | 2/5(5x-5)=5 | | p20–8=–4 p20=4 | | 3^(2x)-30=3^x | | (6x-4)+(2x+8)+(6x-4)+(2x+8)=360 | | 15h−11h=16 | | x=4.5= | | -2n-26=40 | | 6d=34 | | (6x-4)+(2x+8)+(6x-4)=360 | | 37=x-5 | | k=2/9 | | (5x+3)^20=0 |